Lecture 2 —18/09/2024

Origin of the bandgap: the “Physicist’s view”
- Kronig-Penney model

- Nearly-free electron model
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Origin of the bandgap

In a crystal = periodic potential created by the atoms
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Kronig-Penney model
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Exercise and solution
available on demand!



Free electrons

The potential Vis zero and the solutions to Schrodinger’s equation write as
plane waves

2
. h
Hy, (r):éj—mwn (r)=E,y,(r) with pz;V

v, (r)=w,exp(ikr)

The wave function is characterized by its wave vector k

Semiconductor physics and light-matter interaction



Free electrons

Energy and wave vector relationship (dispersion curve):

p2 _thZ_ hZ

E = =
2m, 2m, 2m,
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Energy E

> What does happen in a crystal?
Wave vector k
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1D dispersion curves
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Free electron E(k)=—
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Wave vector k
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E(k)= (k+K)
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K

Wave vector k for any K vector of the reciprocal lattice
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1D dispersion curves

Bragg plane

\ E(k)
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K K2k
Folding in the 15t Brillouin zone

= reduced-zone scheme (vs. extended-zone scheme)
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Reciprocal space (brief reminder)

The set of all wave vectors K that yield plane waves with the periodicity of a
given Bravais lattice (real space) is known as its reciprocal lattice (when so
doing, ks correspond to points in the reciprocal lattice space)

direct lattice: reciprocal lattice:

fcc with edge length a bcc with edge length 4m/a
an
R —
fi'\ ;il...z /L”XY
5>
— 1
Primitive
a,xa, a,xa, a xa, Volume of the

unit cell b, =27

b, =2 ; b, =2 ..
al°(az><33) 2 ﬂal,(azxas) 3 @pnmmvecell

a, are primitive vectors of the direct lattice while b. are primitive vectors of the reciprocal lattice
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Brillouin zone (2D case)

The 15t Brillouin zone is the region of space about a lattice point that is
closer to that point than to any other lattice point

2y, 2
(k) =k

/

with k; a given wave vector

2m,

k = k + K,

k vector within the first Brillouin zone and K, vector of the reciprocal lattice

Bragg planes

e (k+K.)?
b4 4l £ ()= "Lk
/// 2m,
4/ * Due to the crystalline symmetry, we can restrict

o —¢® < @ ® the study of the dispersion curve to the 15t BZ
(translational invariance of the lattice)

o—eo—© *—© « 18t BZ = Wigner-Seitz primitive cells of the
reciprocal lattice, which are all equivalent’

"See, e.g., Ashcroft-Mermin, Chap. 5
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Brillouin zone (3D case)

High symmetry points: T, L, X, and K are within the 1st Brillouin zone (joined
by high-symmetry lines)

Minimum volume allowing for
reconstructing a complete 1st
BZ by symmetry

100] direction: I' A X
111] direction: I AL

110 direction: I’ ¥ K

1st Brillouin zone of the fcc lattice
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Dispersion curves: free electrons (e”) and e in a crystal

Case of Ge
- IZ l,..-—b &\/
8 = L; \
% b ::n La j
= . e
O - = — X,
3 L3 |
=1 —4 —X,
B .
— —8
1., .
Dispersion of =] —12 :
I X K.U I" —
core electrons A X K.U = r
Free-electron bands
True bands
V=0 V0

In a true crystal: degeneracy lift due to the non-zero periodic potential
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Dispersion curves: band structure

20
3C-SiC !
(cubic polytype)”|;

-20

Case of InN with predicted bandgap of 1.9 eV
To be compared to true value of 0.7 eV'!

Issue solved through the introduction of bandgap-corrected-approaches based on
hybrid functional and quasiparticle methods
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Dispersion curves and bandgap: also with photons
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Bloch waves: particle wavefunctions in a periodic potential

Hewn(r)=£p2 +V(r)]wﬂ(r):Enwn(r)

2m

with V(r) which is periodic: V(r+T) = V(r)

The eigenfunctions can be written as follows:

w, (r)=

i

Bloch functions:

To be admitted

u, (1)

e

ik.r

™. Plane wave
(envelope part)

- U, , (atomic wave functions) vary rapidly at the lattice scale

- same symmetry as V(r), i.e., u, (r+T) = u, .(r)
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Electronic band structure (15t summary)

r: vector in the direct lattice
k: vector in the reciprocal space
n: index of the nt" band (1, 2, 3 ...)

To be admitted

The E, (k) curves are the dispersion curves of electrons in the crystal.

Therefore, they account for the electronic band structure.

The E, (k) curves exhibit the symmetry of the reciprocal space.
One can thus reduce E, (k) to the first Brillouin zone and have a
description of the crystal properties as a whole.

To be admitted
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Nearly-free electron model

Let us consider electrons in a crystal with a periodic potential V(x+a) = V(x)

Note that the potential V' is small with respect to the kinetic energy of the electrons
= weak perturbation of the free electron energy

The Hamiltonian writes

2

H=———V’+V
¥ V)

The potential being periodic it can be expressed as a Fourier series:

¢ integer

potential periodicity

where G is a reciprocal space vector such that G=n 'x 27z/a
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Nearly-free electron model

2’;0 +;VGeiGXjW(X):El//(X) (1)

Hw(x):L

The wave functions can also be expressed as Fourier series using Born —von Karman boundary
conditions that imply w (x) =y (x+ L). The wave vectors are then quantized such that K =n"x27/L
with n” € N and L = Na is the crystal length. The wave function then writes

K values form a quasicontinuum
because L is large

p(x)=3C(K)e ™ o

K

(2)in (1) = ZK . _EJC(K)e’KX +(Z ch(K)e"(KG)XH =0
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Nearly-free electron model

x|\ 2m,

2| (et (e

This equation is multiplied by a plane wave term e and further integrated over the whole crystal
volume. The only non-zero terms are those such that G-K = k. In other words if a k term is present,

all the other terms can be deduced by adding a G vector of the reciprocal lattice. This is the
signature of the crystal periodicity.

Wave functions can then be identified via a k vector arbitrarily chosen in the 1t BZ.
v, ()= C(k-G)e " Bloch-Floquet theorem
G

Schrédinger’s equation applied to Bloch functions then becomes:

(hzk2 _Ek]C(k)-F;VGC(k_G):O

2m,

This is the so-called secular equation
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Nearly-free electron model

s

2m,

jc(k)+ZVGc(k-G)=0

G

Non trivial solutions to the secular equation if and only if the determinant =0

PE-S v
2my - -
) : i
% Ik —E(k) ! % |
- 2m, |
""""""""" T R k)
v’ 5 % | —E(k):
A 2y :

V" v v

etc.

Red, blue and green
blocks are all equivalent
(inherited from the
crystalline symmetry)

Number of lines = number of points in the reciprocal space = “infinity” of solutions

In general, it is assumed that periodicity plays a major role and in the limit
|V[>>|V'|>>| V| only a single Fourier component is kept (i.e., only V = 0)
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Nearly-free electron model

= 71t/a and interactions such that
<<V, very periodic case = sine

Particular case: k nearby the 1%t Brillouin zone edge, i.e.
a single Fourier component dominates over the others (V',V’ ..

function)
In that case, k and G-k have the same value and we end up with a (2 x 2) sub-matrix
with identical terms

g _
. © v
My &=G-B
hG?
% Y
i 8m0 |

The potential V lifts the degeneracy between the free electron energy
levels, which have the same energy for k=G/2 and V=0
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Nearly-free electron model

P-e)
2
Mo =0 Determinant leading to the lift of degeneracy
Rk’
V —E
2m,

There are two different solutions:

% n (k-GY
'k andE, = ( )
2m, 2m,

-
2

(g, +E2)i%[(El ~E,)’ +4sz " Where E, =

Eizé i ((k—G)2+k2)i%\/{ i ((k—G)z—kz)} +4V7

2m, 2m,
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Nearly-free electron model

Let us take g = k— G/2

2 2 2,~2 22
E+:h q2+G—i hth+V2
- 2m, 4 2m, 2m,

We then introduce E, the energy of the free electron for k= G/2: E; = h’G® / 8m,

Using a first order expansion we get:

thZ hZGZ—I_V 1+ 4 hZGZ thZ
- V: 8m, 2m,
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Nearly-free electron model

h*g’ 2F
E,.=E,+V 1+=—2 E,
+ =k +2m0( v j (1) E,\
The bandgap is equal to £, = 2V (g = 0) oy -
.................... ;

due to the degeneracy lift between right and left travelling waves

—_

/ Wave vector q \
E

Equation (1) can then be written in a form similar to the free electron case provided we introduce an
effective mass m*

2.2 2.2 2~\"!
Fop 8 g M| e[ dE p—
2 2m. dg” 1_2E0
vV

H %

V
TS
0

An identical mass is predicted for the two bands with the nearly-free electron model!
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Nearly-free electron model

Semiconductor physics and light-matter interaction

Free
electron

1st band

—P K

. Far from the Brillouin zone

edges, the band structure is that
of the free electrons

. The bandgap value is 2V forg=0

. Parabolic dispersion as g>
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Effective mass

Case of the electron

A

020 k M. /m, GaN
s InSe The smaller the bandgap, the
0,15 F ZuTe lighter the effective mass
HiSe . Y 1
0,10 CdTe m' =h’ == =m, ~+m, 4
InP ] dg 1+ 2 2F,
) / GaAs Y
0,05 F GaSh
‘ln.-\s E. (CV)
InSh -}
! ! ! ! | ! LS
0,5 l 1,5 225 3 35
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