
Origin of the bandgap: the “Physicist’s view”

- Kronig-Penney model

- Nearly-free electron model

Lecture 2 – 18/09/2024
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In a crystal  periodic potential created by the atoms
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Origin of the bandgap
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Mean crystal field
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Kronig-Penney model
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Exercise and solution 
available on demand!



The potential V is zero and the solutions to Schrödinger’s equation write as 
plane waves

The wave function is characterized by its wave vector k

4Semiconductor physics and light-matter interaction

Free electrons
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Energy and wave vector relationship (dispersion curve):
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What does happen in a crystal?
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Free electrons
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Free electron

for any K vector of the reciprocal lattice
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1D dispersion curves



Folding in the 1st Brillouin zone

 reduced-zone scheme (vs. extended-zone scheme)
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Bragg plane
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1D dispersion curves
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are primitive vectors of the reciprocal lattice

The set of all wave vectors K that yield plane waves with the periodicity of a 
given Bravais lattice (real space) is known as its reciprocal lattice (when so 
doing, ks correspond to points in the reciprocal lattice space)
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Reciprocal space (brief reminder)

Volume of the 
primitive cell

are primitive vectors of the direct lattice whileia
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with ki a given wave vector

ki = k + Ki,

k vector within the first Brillouin zone and Ki vector of the reciprocal lattice
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The 1st Brillouin zone is the region of space about a lattice point that is 
closer to that point than to any other lattice point

• Due to the crystalline symmetry, we can restrict 
the study of the dispersion curve to the 1st BZ 
(translational invariance of the lattice)

• 1st BZ  Wigner-Seitz primitive cells of the 
reciprocal lattice, which are all equivalent*

*See, e.g., Ashcroft-Mermin, Chap. 5

Bragg planes
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Brillouin zone (2D case)



High symmetry points:  Γ, L, X, and K are within the 1st Brillouin zone (joined
by high-symmetry lines)

1st Brillouin zone of the fcc lattice
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Brillouin zone (3D case)

Minimum volume allowing for 
reconstructing a complete 1st

BZ by symmetry



In a true crystal: degeneracy lift due to the non-zero periodic potential

V = 0 V  0
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Dispersion curves: free electrons (e-) and e- in a crystal

Case of Ge

Dispersion of 
core electrons
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Case of InN with predicted bandgap of 1.9 eV
To be compared to true value of 0.7 eV !

Issue solved through the introduction of bandgap-corrected-approaches based on 
hybrid functional and quasiparticle methods
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Dispersion curves: band structure
3C-SiC 
(cubic polytype)



Photonic crystal
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Dispersion curves and bandgap: also with photons
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with V(r) which is periodic: V(r+T) = V(r) 

The eigenfunctions can be written as follows:
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Bloch functions:
- un,k (atomic wave functions) vary rapidly at the lattice scale
- same symmetry as V(r), i.e., un,k(r+T) = un,k(r)

Plane wave
(envelope part)
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Bloch waves: particle wavefunctions in a periodic potential
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The En(k) curves are the dispersion curves of electrons in the crystal. 
Therefore, they account for the electronic band structure.

r: vector in the direct lattice
k: vector in the reciprocal space
n: index of the nth band (1, 2, 3 ...)

The En(k) curves exhibit the symmetry of the reciprocal space. 
One can thus reduce En(k) to the first Brillouin zone and have a 
description of the crystal properties as a whole.
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Electronic band structure (1st summary)



Let us consider electrons in a crystal with a periodic potential V(x+a) = V(x)

Note that the potential V is small with respect to the kinetic energy of the electrons
 weak perturbation of the free electron energy

The potential being periodic it can be expressed as a Fourier series:
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integer
potential periodicity
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Nearly-free electron model



     
2

02
iGx

G
G

p
H x V e x E x

m
  

 
   
 



The wave functions can also be expressed as Fourier series using Born – von Kármán boundary
conditions that imply . The wave vectors are then quantized such that
with ℕ and L = Na is the crystal length. The wave function then writes
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Nearly-free electron model

K values form a quasicontinuum
because L is large



This equation is multiplied by a plane wave term e-ikx and further integrated over the whole crystal
volume. The only non-zero terms are those such that G-K = k. In other words if a k term is present,
all the other terms can be deduced by adding a G vector of the reciprocal lattice. This is the
signature of the crystal periodicity.

Wave functions can then be identified via a k vector arbitrarily chosen in the 1st BZ.

Schrödinger’s equation applied to Bloch functions then becomes:
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This is the so-called secular equation
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Nearly-free electron model



Number of lines =  number of points in the reciprocal space  “infinity” of solutions

In general, it is assumed that periodicity plays a major role and in the limit
|V|>>|V’|>>|V’’| only a single Fourier component is kept (i.e., only V  0) 

Non trivial solutions to the secular equation if and only if the determinant = 0
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blocks are all equivalent 
(inherited from the 
crystalline symmetry)
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Nearly-free electron model
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Particular case: k nearby the 1st Brillouin zone edge, i.e., k  G/2 = /a and interactions such that 
a single Fourier component dominates over the others (V’,V’’ ... <<V, very periodic case  sine 
function)
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The potential V lifts the degeneracy between the free electron energy
levels, which have the same energy for k = G/2 and  V = 0      

In that case, k and G-k have the same value and we end up with a (2  2) sub-matrix 
with identical terms

k G k 
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Nearly-free electron model
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Determinant leading to the lift of degeneracy
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Nearly-free electron model
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We then introduce E0 the energy of the free electron for k = G/2:

Using a first order expansion we get:                   

2 2 2 2 2 2
2 2

0 0 02 4 2 2
G G q

E q V
m m m

 
    

 

  

2 2
0 08/E G m 

Let us take q = k – G/2
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Nearly-free electron model



Equation (1) can then be written in a form similar to the free electron case provided we introduce an 
effective mass m*

The bandgap is equal to Eg = 2V (q = 0)

due to the degeneracy lift between right and left travelling waves 
eikr and ei(k-G)r
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An identical mass is predicted for the two bands with the nearly-free electron model!
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Nearly-free electron model

E+

E-



1. Far from the Brillouin zone 
edges, the band structure is that
of the free electrons

2. The bandgap value is 2V for q = 0

3. Parabolic dispersion as q²
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Nearly-free electron model

Band 
gap
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The smaller the bandgap, the 
lighter the effective mass 
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Effective mass

Case of the electron


