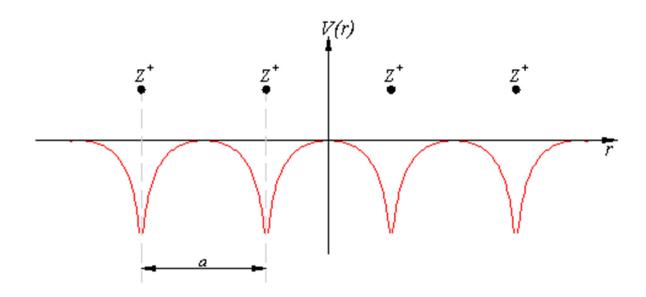
Lecture 2 – 18/09/2024

Origin of the bandgap: the "Physicist's view"

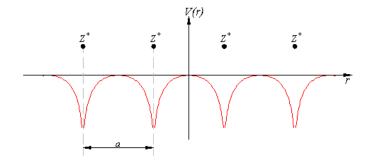
- Kronig-Penney model
- Nearly-free electron model

Origin of the bandgap

In a crystal ⇒ periodic potential created by the atoms

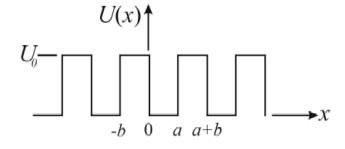


Kronig-Penney model



$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V(x)\psi = E\psi$$

Mean crystal field



$$\psi_I(x) = Ae^{iKx} + Be^{-iKx}$$

$$\psi_{II}(x) = Ce^{Qx} + De^{-Qx}$$

Exercise and solution available on demand!

Free electrons

The **potential** *V* is zero and the solutions to Schrödinger's equation write as plane waves

$$H_{e}\psi_{n}(\mathbf{r}) = \frac{p^{2}}{2m}\psi_{n}(\mathbf{r}) = E_{n}\psi_{n}(\mathbf{r}) \quad \text{with} \quad p = \frac{\hbar}{i}\nabla$$

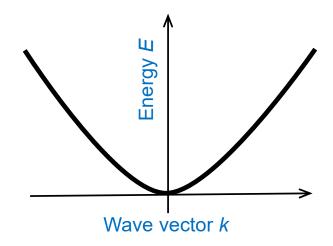
$$\psi_{n}(\mathbf{r}) = \psi_{0} \exp(i\mathbf{k}\mathbf{r})$$

The wave function is characterized by its wave vector **k**

Free electrons

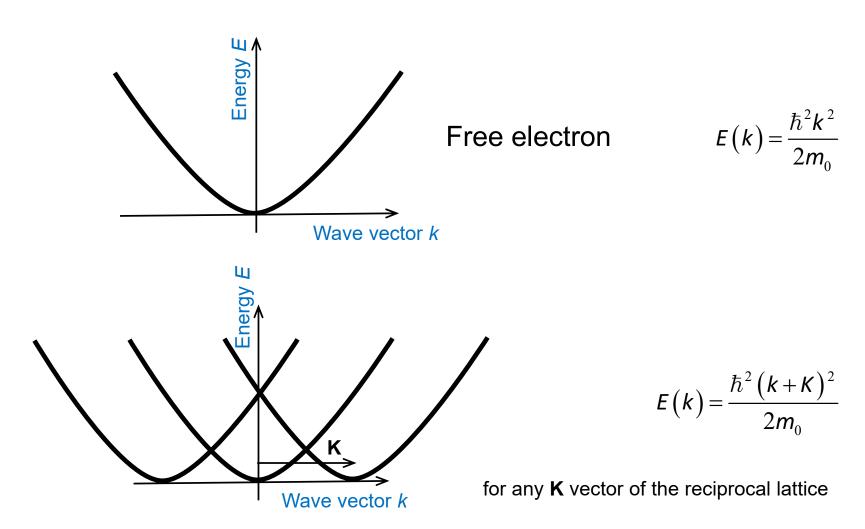
Energy and wave vector relationship (dispersion curve):

$$E = \frac{p^2}{2m_0} = \frac{\hbar^2 k^2}{2m_0} = \frac{\hbar^2}{2m_0} \left(k_x^2 + k_y^2 + k_z^2 \right)$$

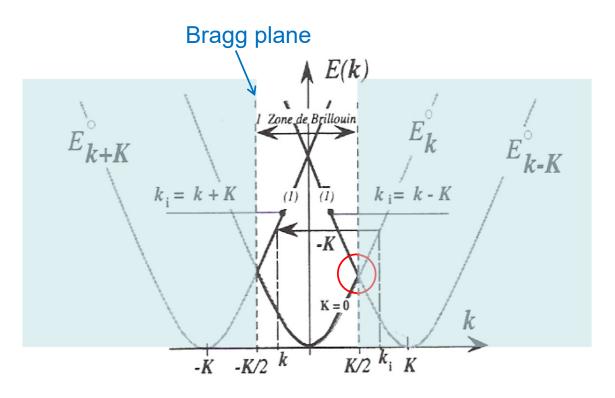


What does happen in a crystal?

1D dispersion curves



1D dispersion curves

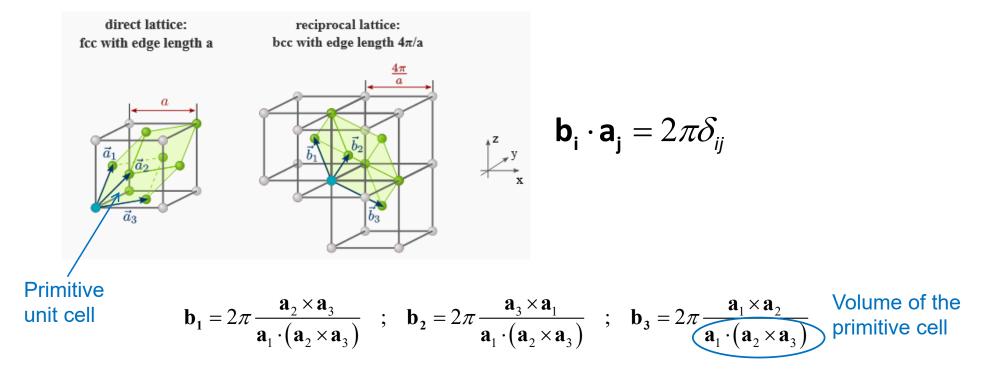


Folding in the 1st Brillouin zone

= reduced-zone scheme (vs. extended-zone scheme)

Reciprocal space (brief reminder)

The set of all wave vectors **K** that yield plane waves with the periodicity of a given Bravais lattice (real space) is known as its reciprocal lattice (when so doing, **k**s correspond to points in the reciprocal lattice space)



 \mathbf{a}_i are primitive vectors of the direct lattice while \mathbf{b}_i are primitive vectors of the reciprocal lattice

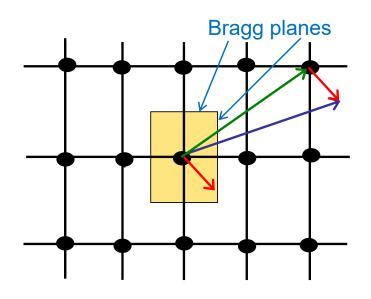
Brillouin zone (2D case)

The 1st Brillouin zone is the region of space about a lattice point that is closer to that point than to any other lattice point

$$E(k_i) = \frac{\hbar^2 k_i^2}{2m_0}$$
 with $\mathbf{k_i}$ a given wave vector

$$\mathbf{k}_{i} = \mathbf{k} + \mathbf{K}_{i}$$

k vector within the first Brillouin zone and K_i vector of the reciprocal lattice



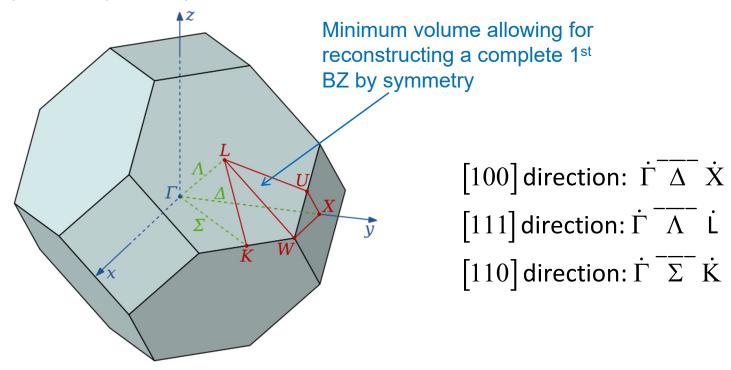
$$E(k_i) = \frac{\hbar^2 (k + K_i)^2}{2m_0}$$

- Due to the crystalline symmetry, we can restrict the study of the dispersion curve to the 1st BZ (translational invariance of the lattice)
- 1st BZ ≡ Wigner-Seitz primitive cells of the reciprocal lattice, which are all equivalent*

^{*}See, e.g., Ashcroft-Mermin, Chap. 5

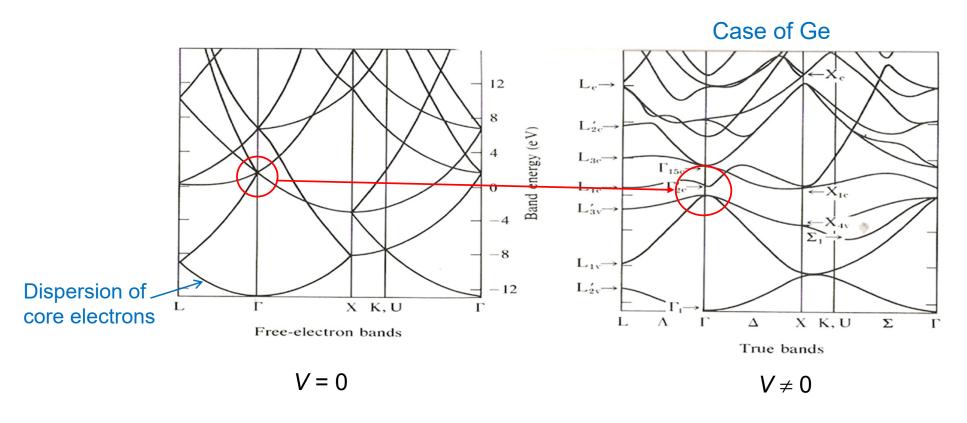
Brillouin zone (3D case)

High symmetry points: Γ, L, X, and K are within the 1st Brillouin zone (joined by high-symmetry lines)



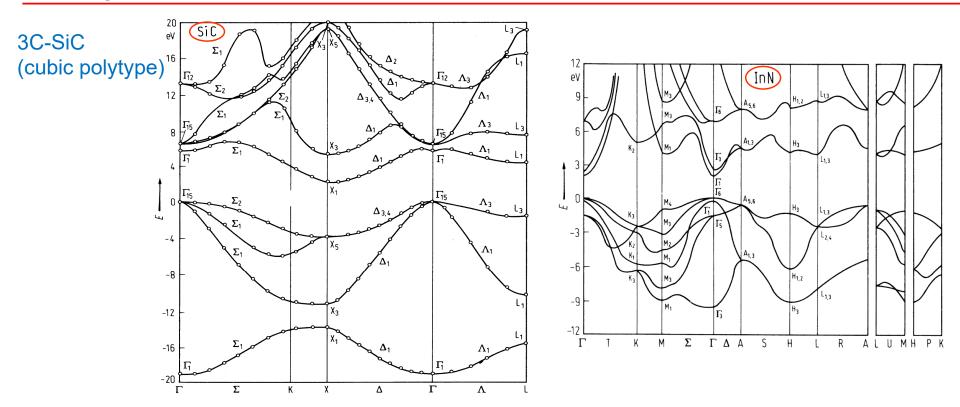
1st Brillouin zone of the fcc lattice

Dispersion curves: free electrons (e⁻) and e⁻ in a crystal



In a true crystal: degeneracy lift due to the non-zero periodic potential

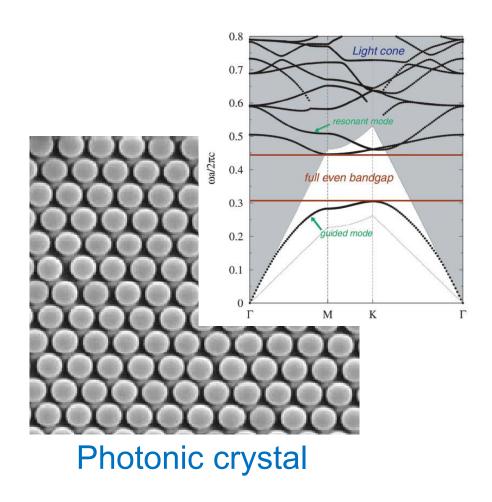
Dispersion curves: band structure

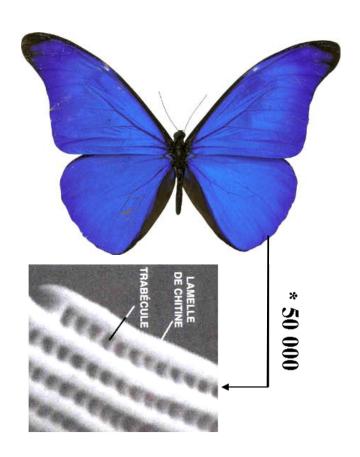


Case of InN with predicted bandgap of 1.9 eV To be compared to true value of 0.7 eV!

Issue solved through the introduction of bandgap-corrected-approaches based on hybrid functional and quasiparticle methods

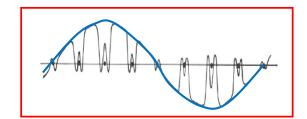
Dispersion curves and bandgap: also with photons





Bloch waves: particle wavefunctions in a periodic potential

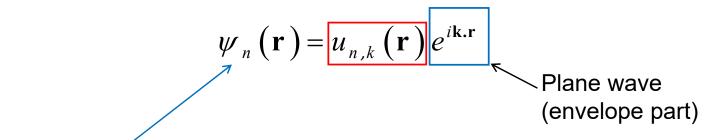
$$H_e \psi_n(\mathbf{r}) = \left(\frac{p^2}{2m} + V(\mathbf{r})\right) \psi_n(\mathbf{r}) = E_n \psi_n(\mathbf{r})$$



with V(r) which is periodic: V(r+T) = V(r)

The eigenfunctions can be written as follows:

To be admitted



Bloch functions:

- $u_{n,k}$ (atomic wave functions) vary rapidly at the lattice scale
- same symmetry as $V(\mathbf{r})$, i.e., $u_{n,k}(\mathbf{r}+\mathbf{T}) = u_{n,k}(\mathbf{r})$

Electronic band structure (1st summary)

To be admitted

r: vector in the direct lattice

k: vector in the reciprocal space

n: index of the *n*th band (1, 2, 3 ...)

The $E_n(k)$ curves are the dispersion curves of electrons in the crystal. Therefore, they account for the electronic band structure.

To be admitted

The $E_n(k)$ curves exhibit the symmetry of the reciprocal space. One can thus reduce $E_n(k)$ to the first Brillouin zone and have a description of the crystal properties as a whole.

Let us consider electrons in a crystal with a periodic potential V(x+a) = V(x)

Note that the potential V is small with respect to the kinetic energy of the electrons ⇒ weak perturbation of the free electron energy

The Hamiltonian writes

$$H = -\frac{\hbar^2}{2m_0} \nabla^2 + V(x)$$

The potential being periodic it can be expressed as a Fourier series:

$$V(x) = \sum_{G} V_{G} e^{iGx}$$

where G is a reciprocal space vector such that G = $n' \times 2\pi/a$

$$H\psi(x) = \left(\frac{p^2}{2m_0} + \sum_G V_G e^{iGx}\right) \psi(x) = E\psi(x) \tag{1}$$

The wave functions can also be expressed as Fourier series using Born – von Kármán boundary conditions that imply $\psi(x) = \psi(x+L)$. The wave vectors are then quantized such that $K = n'' \times 2\pi/L$ with $n'' \in \mathbb{N}$ and L = Na is the crystal length. The wave function then writes

K values form a quasicontinuum because *L* is large

$$\psi(x) = \sum_{K} C(K) e^{-iKx}$$
 (2)

(2) in (1)
$$\Rightarrow \sum_{K} \left[\left(\frac{\hbar^{2}K^{2}}{2m_{0}} - E \right) C(K) e^{-iKx} + \left(\sum_{G} V_{G}C(K) e^{-i(K-G)x} \right) \right] = 0$$

$$\sum_{K} \left[\left(\frac{\hbar^{2} K^{2}}{2m_{0}} - E \right) C(K) e^{-iKx} + \left(\sum_{G} V_{G} C(K) e^{-i(K-G)x} \right) \right] = 0$$

This equation is multiplied by a plane wave term e^{-ikx} and further integrated over the whole crystal volume. The only non-zero terms are those such that G-K=k. In other words if a k term is present, all the other terms can be deduced by adding a G vector of the reciprocal lattice. This is the signature of the crystal periodicity.

Wave functions can then be identified via a k vector arbitrarily chosen in the 1st BZ.

$$\psi_k(x) = \sum_{G} C(k-G)e^{-i(k-G)x}$$
 Bloch-Floquet theorem

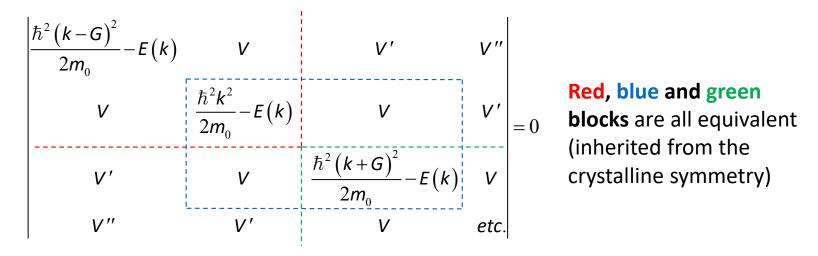
Schrödinger's equation applied to Bloch functions then becomes:

$$\left(\frac{\hbar^2 k^2}{2m_0} - E_k\right) C(k) + \sum_G V_G C(k - G) = 0$$

This is the so-called **secular equation**

$$\left(\frac{\hbar^2 k^2}{2m_0} - E_k\right) C(k) + \sum_G V_G C(k - G) = 0$$

Non trivial solutions to the secular equation if and only if the determinant = 0



Number of lines = number of points in the reciprocal space ⇒ "infinity" of solutions

In general, it is assumed that periodicity plays a major role and in the limit |V| >> |V'| >> |V''| only a single Fourier component is kept (i.e., only $V \neq 0$)

Particular case: k nearby the 1st Brillouin zone edge, i.e. $k \approx G/2 = \pi/\alpha$ and interactions such that a single Fourier component dominates over the others $(V', V'') = \pi/\alpha$ and interactions such that function)

In that case, k and G-k have the same value and we end up with a (2 \times 2) sub-matrix with identical terms

$$\begin{bmatrix} \frac{\hbar^2 G^2}{8m_0} - E & V \\ V & \frac{\hbar^2 G^2}{8m_0} - E \end{bmatrix}$$

$$k = G - k$$

The potential V lifts the degeneracy between the free electron energy levels, which have the same energy for k = G/2 and V = 0

$$\begin{vmatrix} \frac{\hbar^2 (k-G)^2}{2m_0} - E & V \\ V & \frac{\hbar^2 k^2}{2m_0} - E \end{vmatrix} = 0$$
 Determinant leading to the lift of degeneracy

There are two different solutions:

$$E_{\pm} = \frac{1}{2} (E_1 + E_2) \pm \frac{1}{2} \left[(E_1 - E_2)^2 + 4V^2 \right]^{1/2} \text{ where } E_1 = \frac{\hbar^2 k^2}{2m_0} \text{ and } E_2 = \frac{\hbar^2 (k - G)^2}{2m_0}$$

or

$$E_{\pm} = \frac{1}{2} \frac{\hbar^2}{2m_0} \left(\left(k - G \right)^2 + k^2 \right) \pm \frac{1}{2} \sqrt{\left[\frac{\hbar^2}{2m_0} \left(\left(k - G \right)^2 - k^2 \right) \right]^2 + 4V^2}$$

Let us take q = k - G/2

$$E_{\pm} = \frac{\hbar^2}{2m_0} \left(q^2 + \frac{G^2}{4} \right) \pm \sqrt{\frac{\hbar^2 G^2}{2m_0} \frac{\hbar^2 q^2}{2m_0} + V^2}$$

We then introduce E_0 the energy of the free electron for k = G/2: $E_0 = \hbar^2 G^2 / 8 m_0$ Using a first order expansion we get:

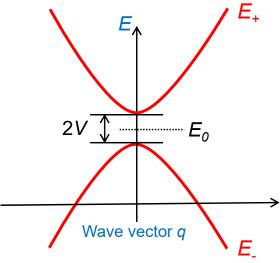
$$E_{\pm} = \frac{\hbar^2 q^2}{2m_0} + \frac{\hbar^2 G^2}{8m_0} \pm V \sqrt{1 + \frac{4}{V^2}} \frac{\hbar^2 G^2}{8m_0} \frac{\hbar^2 q^2}{2m_0}$$

$$E_{\pm} = E_0 \pm V + \frac{\hbar^2 q^2}{2m_0} \left(1 \pm \frac{2E_0}{V} \right)$$

$$E_{\pm} = E_0 \pm V + \frac{\hbar^2 q^2}{2m_0} \left(1 \pm \frac{2E_0}{V} \right)$$
 (1)

The bandgap is equal to $E_q = 2V (q = 0)$

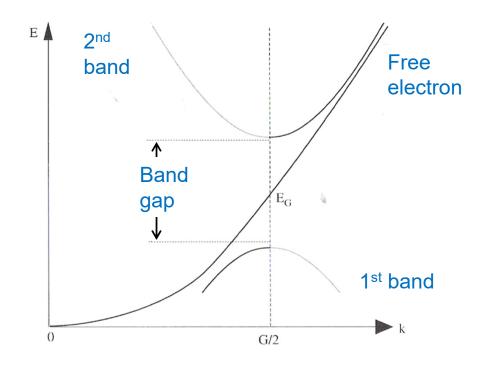
due to the degeneracy lift between right and left travelling waves e^{ikr} and $e^{i(k-G)r}$



Equation (1) can then be written in a form similar to the free electron case provided we introduce an effective mass m^*

$$E_{+} = E_{0}^{+} + \frac{\hbar^{2} q^{2}}{2m_{+}^{*}} \qquad E_{-} = E_{0}^{-} + \frac{\hbar^{2} q^{2}}{2m_{-}^{*}} \qquad m_{\pm}^{*} = \hbar^{2} \left(\frac{d^{2} E}{dq^{2}}\right)^{-1} = m_{0} \frac{1}{1 \pm \frac{2E_{0}}{V}} \approx \pm m_{0} \frac{V}{2E_{0}}$$

An identical mass is predicted for the two bands with the nearly-free electron model!



- 1. Far from the Brillouin zone edges, the band structure is that of the free electrons
- 2. The bandgap value is 2V for q = 0
- 3. Parabolic dispersion as q^2

Effective mass

Case of the electron

